INSTITUT AGRONOMIQUE ET VETERINAIRE HASSAN II UNITE DE PHYSIQUE Année 2005-2006 série N° 1

TD de Thermodynamique

EXERCICE 1:

Un compresseur formé par un récipient, fermé par un piston mobile, contient 2 g de l'hélium (gaz parfait, monoatomique) dans les conditions (P_1 , V_1). On opère une compression adiabatique, de façon réversible, qui amène le gaz dans les conditions (P_2 , V_2).

On donne : $P_1 = 1$ atm, $V_1 = 10$ litres, : $P_2 = 3$ atm. Déterminer :

- a Le volume final V_2 ?
- b Le travail reçu par le gaz?
- c La variation d'énergie interne du gaz?
- d En déduire l'élévation de température du gaz, sans calculer la température initiale T_1

On donne le rapport des chaleurs massiques à pression et volume constants : $\gamma = \frac{C_P}{C_V} = \frac{5}{3}$

Constante des gaz parfaits : R = 8.3 S.I.

EXERCICE 2:

Pour vérifier que la quantité de chaleur est une fonction qui dépend du chemin suivi, on considère un gaz parfait diatomique ($C_V = 5/2~R$) qui est porté réversiblement d'un état initial i

à un état final f par 3 chemins différents $i \rightarrow a \rightarrow f$, $i \rightarrow b \rightarrow f$, $i \rightarrow c \rightarrow f$.

- i→a→f: isochore suivie d'une isobare
- i→b→f : isobare suivie d'une isochore
- $i\rightarrow c\rightarrow f$: chemin rectiligne direct.

Calculer la quantité de chaleur échangée dans les trois cas en fonction de T_i température de l'état initial sachant que : $P_f = 2 P_i$ et $V_f = 2 V_i$. Conclusion ?.

EXERCICE 3:

Une ensileuse fonctionne selon un cycle ABCA décrit comme suit :

- 1- Le gaz parfait est amené de l'état A (P_A , V_A , T_A) à l'état B (P_B , V_B , T_B) par une transformation à volume constant. Sachant que $P_B = 2 P_A$, calculer T_B en fonction de T_A ?
- 2- Le gaz subit ensuite une détente isotherme qui l'amène à un état C (P_C , V_C , T_C) de telle sorte que $P_C = P_A$. Calculer V_C en fonction de V_A ?
- 3- Le gaz revient alors à son état initial A par une transformation à pression constante.
 - a Faire un schéma du cycle ABCA dans le diagramme de CLAPEYRON.
- b Calculer le travail total W échangé par le gaz pendant le cycle ABCA avec le milieu extérieur. Exprimer ce travail en fonction des variables P_A et V_A.

EXERCICE 4: Rappels mathématiques.

a - Soient δZ et dz deux formes différentielles qui s'écrivent :

$$\delta Z = xdy - ydx$$

 $dz = xdy + (2x + y) dx$

Calculer $\oint \delta Z$ et $\oint dz$ sur le contour abca , a(1,1), b(1,2), c(2,2) conclure?

b - Dans quelles conditions la forme différentielle A (x,y) dx + B (x,y) dy est totale exacte ?

Applications:
$$(x^2 - y) dx + x dy$$

$$xy dx + xy dy$$

$$\frac{(x^2 - y)dx + xdy}{x^2}$$

$$\frac{dx}{y} - \frac{x}{y^2} dy$$

<u>EXERCICE 5</u>: On chauffe une serre contenant 580 g d'air (gaz supposé parfait) de 4 °C à 27 °C. Calculer:

a - La variation d'énergie interne de l'air, au cours de cet échauffement ?

b - La quantité de chaleur reçue par l'air, si ce dernier a fourni un travail de 2000 J.

On donne : R = 8,32 si
$$\gamma = \frac{C_P}{C_V} = 1.4$$

EXERCICE 6:

Un gaz parfait subit une transformation adiabatique réversible (sans échange de chaleur) de l'état (P_0 , V_0 , T_0) à l' état (P_1 , V_1 , T_1). On admettra, ce que sera justifié au cours, qu'une telle transformation satisfait à l'équation $PV^{\gamma}=cte$, γ étant une constante.

Calculer le travail reçu par le gaz au cours de la transformation.

AN:
$$T_0 = 300 \,^{\circ}\text{K}$$
 $T_1 = 400 \,^{\circ}\text{K}$ et $\gamma = 1.4$

EXERCICE 7:

On considère deux moles d'oxygène (gaz supposé parfait) que l'on peut faire passer réversiblement de l'état initial A (P_A , V_A , T_A) à l' état B (P_B = 30A, V_B , T_A) par trois chemins distincts :

- Chemin A1B (transformation isotherme).
- Chemin A2B (représenté par une droite dans le diagramme (P, V)).
- Chemin A3B (A vers 3 isochore et 3 vers B isobare)

Déterminer le travail et la quantité de chaleur échangés au cours :

- de chacune des transformations.
- ♦ du cycle.

Conclusion?